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Introduction 
It is widely believed that human cognition has evolved together with human language. It is also widely 
believed that the compositionality of natural language is one of its central features. The question then 
naturally arises why, and how, language evolved into a compositional means of communication. 

Compositionality allows the body of semantic knowledge to be considerably smaller than the piecemeal 
knowledge of the language, i.e. independent knowledge of the meaning of each of the sentences of the 
language. Having a language with a greater expressive power seems like a good thing for a population, 
and maybe that could be enough for answering the question. It isn’t, however. 

One thing that can be asked further is by what evolutionary mechanisms a compositional language 
evolved. We don’t believe that there was a sudden leap from an un-systematic to a compositional 
language, and we may ask what principle may lead, step by step, from the former to the latter9. In the 
section “The complexity of learning” I’ll review an attempt to answer this question by appeal to the 
cognitive difficulty and computational complexity of language learning. 

In the section “The complexity of interpretation” I shall present a different aspect of computational 
complexity as applied to the cognition of language, this time concerning the complexity of interpretation. 
I shall spell out the relation to compositionality, and end with a suggestion of how this connects with 
questions of evolution. 

In the next section, I shall give a brief introduction to the idea of compositionality. 

Of course, this is not convincing, since a small change in a rule system, or in a hard wiring, can create 
recursion, or feedback loops. 

Compositionality 
There are some remarkable facts about human linguistic communication: language users manage to 
successfully communicate new thought contents (contents not thought before) by means of new sentences 
(not used or considered before). The first part, that new contents are communicated, is a phenomenon that 
could happen simply because of context dependence: if ‘kraa’ means food here now, then every new 
utterance of ‘kraa’ means something different, even though the sophistication of speaker or hearer need 

9 In a public talk in Paris, 29 May 2010, entitled ‘Poverty of Stimulus: Some Unfinished Business’, Noam Chomsky 
commented on the evolution of language literature, claiming that it does not concern the evolution of language. 
This is because it suffers from the prejudice that evolution must take place in small steps. However, Chomsky 
remarked, the step from a finite to an infinite linguistic capacity is anything but small. So it cannot have been a 
step of evolution, as long as that is understood according to current theories. 
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not exceed that of seagulls. However, humans, unlike seagulls, appear to be able to communicate new 
contents, from an open-ended set, even if context is held fixed10. When context is held fixed (at least in 
relevant respects), if a different content is communicated, this is because a different sentence has been 
used11. So the human hearer H appears to have the ability to associate a new sentence uttered by the 
speaker S with a (probably new) content that is the same as, or at least sufficiently similar to, the content 
which S wanted to communicate, and the speaker S appears to have the ability to select a suitable 
sentence s that makes the task of H feasible. The speaker therefore has an articulation (production) 
capacity that interlocks with the interpretation (comprehension) capacity of the hearer. Since mind-
reading is out of the question, and chance would deliver a microscopic rate of communicative success, 
given the sizes of the domains of contents and sentences, there must be something about language itself 
that makes this possible12. 

The interpretation part of this coordination task has received much more attention than articulation part. 
The hearer’s task is made possible if there is a systematic correlation between the build-up of a sentence 
and its meaning. This is usually stated as the principle of compositionality: 

(PC) The meaning of a complex expression is a function of the meanings of its parts and its mode of 
composition. 

We shall say that the semantics of language is compositional or not, intending the assignment of meaning 
by some particular semantic function or semantic theory. In a derivative sense, we can say that meaning 
property of a particular language is compositional, if the correct semantics for it is compositional in the 
first sense. 

The picture that the appeal to (PC) gives of the hearer’s capacity is this: The hearer knows the meaning of 
the simple expressions of the language (lexical items and morphological units), which are finitely many. 
The hearer also knows the semantic significance of the (morpho-) syntactic modes of combination, which 
are finitely many. Putting knowledge of these two kinds together, the hearer can work out, step by step, 
the meaning of complex expressions. He starts with working out the meaning of those complex 
expressions that have simple parts, and then using this knowledge he can go on with combinations that 
have these complexes as parts, and so on. In interpreting (1a), given the syntactic structure (phrase 
structure) of (1b), 

(1) a. John saw the dog 

 b. [S JohnNP [VP sawVT [NP theDet dogN]]] 

the hearer knows the meaning of ‘the’, ‘dog’, ‘John’, and ‘saw’, and the semantic significance of a) the 
Determiner + Noun (Det+N) combination, b) the Verb (transitive) + Noun 
Phrasecombination(VT+NP),and c) theNounPhrase + Verb Phrasecombination(NP+VP). He starts with 
working out the meaning of ‘the dog’, using a), goes on working out the meaning of ‘saw the dog’, using 
b), and finishes by working out the meaning of (1a) from there, using c). 

Although (PC) is a standard formulation, what is meant by ‘part’, as the principle is normally understood, 
is immediate part (immediate constituent). The principle is often incorrectly stated as saying that the 
meaning of the complex expression is a function of the meanings of the simple parts and the way they are 
combined. But this principle is degenerate. The mode of combination of the simple parts in (1) is in itself 
a combination of Det+N, VT+NP, and NP+VP, and the speaker would have to know the semantic 

10 Of course, this is inferred; because of the uniqueness of contexts, it cannot be directly tested. 
11 It may also be that the same sentence has been used, but under a different syntactic analysis. More about this 
below. 
12 Indeed, this phenomenon has (on and off) motivated reflection on language during a hundred years. Cf. Frege 
1980; Frege 1923, opening passage. 
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significance of that complex mode. In fact, there are denumerably many ways of combining simple parts, 
and so if the hearer needs to know the semantic significance of each, the explanation of how he can 
understand new sentences cannot any more appeal to a working out strategy based on finite knowledge. 
Moreover, on the alternative formulation, the hearer who knows that the father of Annette is also the 
father of Isabel is not licensed to infer that the sentences 

(2) a. The father of Annette sleeps 

 b. The father of Isabel sleeps 

have the same truth value, for he is not licensed by the appeal to only simple parts of making use of that 
fact that ‘the father of Annette’ and ‘the father of Isabel’ are coreferring noun phrases. 

If instead of requiring that the meaning of the complex is determined by the immediate parts and their 
combination, we require that it be determined by the immediate parts and their immediate parts, and the 
mode of combination of these two syntactic layers, we get a principle that is strictly weaker than (PC), but 
not degenerate. In fact, it has been argued that some particular constructions in English obey only this 
weaker principle13. 

A principle closely related to (PC) is 

(PS) If in a complex expression A a constituent e is replaced by a constituent e' that has the same 
meaning as e, then the meaning of the new expression A'= A[e'/e] has the same meaning as A. 

(where ‘A[e'/e]’ is designates the expression the results from substituting e' for e in one or more 
occurrences). The intersubstituted constituents need not be immediate. In fact, if the semantics is total, so 
that each grammatical expression is meaningful, then (PC) and (PS) are equivalent. 

If, by contrast, the semantics is partial, the two principles can come apart. On the one hand, if not all parts 
of a complex expression are meaningful, then the meaning of the complex is trivially not a function of the 
meanings of the parts ((PC) does not hold), but it can still hold that when two parts with the same 
meaning (i.e. meaningful parts) are intersubstituted, the meaning of the complex is preserved ((PS) holds). 
On the other hand, it may also be that A is meaningful, and that e and e' mean the same, yet A[e'/e] is not 
meaningful ((PS) does not hold), while it is still true that the meaning of every complex expression that 
has meaning is function of the meaning of its parts and their mode of combination ((PC) holds). 

These observations are due to Wilfrid Hodges (2001). He calls the principle that the parts of every 
meaningful expression are meaningful the domain principle. He also calls the principle that if two 
expressions mean the same, then substituting the one for the other does not lead to loss of meaning in the 
complex the husserl principle (and the semantics husserlian). He also proved that given that the domain 
principle and the husserl principles hold, (PC) and (PS) are again equivalent, even if the semantics is 
partial. 

Using the equivalence, we can see that (PC) in several respects quite weak. To get a counterexample to 
(PS), and thereby to (PC), we need two expressions e and e' with the same meaning, and two complex 
expressions, A and A[e'/e] with different meanings. If there is no counterexample, (PS) and hence also 
(PC) hold. Now, if no two different expressions in the language in question have the same meaning 
(meaning is hyperdistinct), then no counterexample is possible, and hence the semantics is vacuously 
compositional. Similarly, if no two expressions in the language differ in meaning, again the semantics is 
trivially compositional. 

The first of these two observations, that hyperdistinctness entails compositionality, is somewhat damaging 
for the explanatory power of compositionality. Meaning for complex expressions of a language may obey 

13 According to Peters and Westerståhl (2006, chapter 6), this holds for the semantics of possessive constructions 
of the form NP’s. 
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no regularity whatsoever, so that it is impossible to work out the meaning of a new complex expression, 
and yet because of hyperdistinctness, its meaning is compositional. So compositionality alone does not 
explain how speakers can work out the meaning of new complex expressions. 

To explain the ability of hearers, the semantics therefore needs some additional properties. In particular, 
the semantic function that assigns meanings to expressions must be computable. This raises the following 
problem: If the semantic is computable, why should it also be compositional? This is a problem, for, as 
we shall see in “The complexity of interpretation”, a language may have a computable semantics that is 
not compositional. 

So far we have been talking as if semantic values or properties are assigned to expressions, where 
expressions are understood as surface forms, i.e. types of spoken utterance, types of written inscriptions, 
or types of other concrete marks or events. Surface forms are, however, often syntactically ambiguous. 
Two different words may have the same surface form (homonymy), and complex expressions may on top 
be ambiguous with respect to scope relations (witness Quine’s ‘pretty little girls’ camp’). Since different 
disambiguations often yield different meanings, we must define the semantic function for disambiguated 
expressions, such as analysis trees, or grammatical terms. For setting out compositionality formally, we 
therefore need on the one hand a syntactic framework, which specifies disambiguated expressions of the 
language, and the semantic function and properties defined over these. We will also need a domain of 
semantic values and domains of other entities that can enter as arguments to the semantic function. In the 
modern tradition, there are two approaches to this. In the tradition from Montague14, the syntax is built up 
from categories of expressions and corresponding sets of expressions that are of these categories, and the 
syntactic rules contain specifications of which categories their arguments and values have. The syntax 
then has the form of an algebra, where the grammatical rules are implemented as operations from n-
tuples of expressions (of the right categories) to expressions. Correspondingly, the semantic values are 
organized into types of entities, and there is a meaning algebra, where the entities are possible semantic 
values, and operations in this algebra map n-tuples of entities (of the right types) on entities. There is a 
mapping between the syntactic categories and the meaning types. The semantic function, finally, is a 
homomorphism from the syntactic algebra to the meaning algebra. The function must respect the mapping 
between categories and types15. 

In the more recent tradition from Hodges (2001), there is no appeal to categories and types. Instead, 
syntactic operations are taken to be partial; they are defined only for certain arguments (combinations of 
arguments). There is a syntactic algebra, but there is no assumption that there is a meaning algebra, only a 
domain of meanings where no prior structure is required16. We shall here follow Hodges, with some 
modifications. The syntax for a language L is a triple (GL, EL, VL), where GL is a grammatical term 
algebra, EL is the set of expressions of L, and VL is a mapping from grammatical terms to expressions (for 
convenience I shall henceforth drop the subscript). G itself is a triple (T, Σ, A), where T is the set of 
grammatical terms, Σ the (finite) set of operations that map n-tuples of grammatical terms on 
grammatical terms, and A is a (finite) set of atomic grammatical terms. T is the closure of A under Σ, i.e. 
the set of terms that are generated from A by means of (possibly repeated) applications of the operations 
in Σ. 

  

14 Cf. Montague 1970; Montague 1973, Janssen 1986; Janssen 1997, Hendriks 2001. 
15 7The rest of this section is somewhat technical and may be skipped by readers who only want the main ideas. 
16 8If we require that the semantics be recursive, then an inductive structure in the meaning domain is needed. Cf. 
section on “The complexity of interpretation”. 

54 

                                                           



Compositionality, Complexity, and Evolution 

To exemplify, let A be the set {‘John’,‘saw’,‘the’,‘dog’} and Σ the set {α, β, γ}, corresponding to the rules 
for forming Det+NP, VT+NP, and NP+VP, respectively, of example (1). Then the grammatical term that 
corresponds to the phrase structure analysis (1b) is 

(3) γ(‘John’, β(‘saw’, α(‘the’,‘dog’)))17. 

The V function compositionally defined on the grammatical terms. For each operation σ on terms, there is 
a corresponding operation σ on expressions such that 

(V) V (σ(t1,..., tm)) = σ(V (t1),...,V (tn) 

In the very simple case of our example, we just have 

(4) V (σ(t1, t2)) = V (t1)˽V (t2) 

where σ is α or β or γ, and ‘˽’ marks a word boundary (space). We therefore get, after three applications of 
(V), 

(5)  V (γ(‘John’, β(‘saw’, α(‘the’,‘dog’)))) = ‘John’˽‘saw’˽‘the’˽‘dog’ 

which is a structural-descriptive name of ‘John saw the dog’. No abstract limitations are imposed on V 
(such as that the value of the first argument should appear in the expression (surface string) to the left of 
the value of the second argument), although a number of restrictions will be empirically motivated, in 
order that the hearer be able to parse the string. The algebraic framework as such is very general; it can be 
adapted to phrase structure rules as well as to transformations or movements. 

A semantic function µ is also defined on the grammatical terms, mapping terms on a domain M of 
semantic values. Given the algebraic framework we can now state a more formal version of (PC): 

(PC')  For every n-ary syntactic operation σ ∈ Σ there is a function rσ: Mn −→ M such that for all 
grammatical terms t1,..., tn such that α(t1,..., tn) is defined and µ meaningful, it holds that µ(α(t1,..., tn)) = 
rσ(µ(t1),..., µ(tn)). 

We call the function rσ a meaning operation. If (PC') holds for a semantic function µ, we say that µ is 
compositional. Here µ is of course left unspecified. Compositionality is a general formal property that any 
particular semantic function, given a syntax, either has or lacks18. A statement that a semantics is 
compositional, in this standard sense, therefore is a ∀∃1∀ statement, where the existential quantifier is 
second-order. 

Historically, the first precise statement of (PS) was given by Gottlob Frege (1892), for Bedeutung. Clarity 
about (PC) developed slowly after that, and did not reach maturity until in the mid-late 1970s19. 

The complexity of learning 
The question why evolution would tend to produce language with compositional semantics can be seen 
from a learning point of view. Learning, in turn, can be viewed both from a genetic and from a cultural 
perspective. The issues involved are surveyed in Smith and Kirby 2012. In the cultural perspective, the 
issue is that of iterated learning: A speaker B learns from a speaker A, a speaker C from speaker B, and 

17 This is an illustration. It might be preferable e.g. to have as top operation one that combines the term that 
corresponds to ‘the dog’i with the term that corresponds to ‘John saw i ’, analogous to a Montagovian quantification 
rule. 
18 It is another matter that language theorists may want to adjust their syntactic theory for the sake of making 
their semantics compositional. 
19 For more on compositionality, see Pagin and Westerståhl 2010b; Pagin and Westerståhl 2010c; Pagin and 
Westerståhl 2010a, Janssen 1997, Szabó 2008. 
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so on. Without considering genetic change, we can inquire into the conditions under which such iterated 
learning tends to produce language change, in each step, that drifts towards a compositional semantics. 

Here I shall focus on a particular proposal in Brighton 2005. Brighton, among others, emphasizes the role 
of the so-called learning bottleneck. By this is meant the fact that only a meagre subset of the whole 
language is actually transmitted to the learner, and the learner needs to develop a hypothesis about the 
underlying regularity in order to generalize to new cases. This of course is a counterpart to Chomsky’s 
poverty of the stimulus argument. See e.g. Chomsky 1971. The point of that argument was that the sample 
of utterances the child gets is very small, and if there are no built-in restrictions on how to project the 
sample on to a grammar there are just too many possibilities compatible with the sample for a projection 
to take place at all. Hence, there must be built-in restriction, an innate universal grammar. 

Brighton, and those working in the same tradition, reject this argument. In contrast to Chomsky, Brighton 
thinks that we can lay down general principles for learning that will generate the desired result, without 
the need to appeal any particular innate linguistic structures. As regards linguistic meaning, and in 
particular the emergence of compositional semantics, Brighton suggests how. 

Brighton operates with simple abstract languages, strings over an alphabet (as is standard in formal 
language theory). As meanings he uses a feature-value space: the meaning of a meaningful string is a 
vector, consisting of one value for each feature (e.g. (2,2,2) in a space of three features each of which can 
take two values). The interpreted language is a set of pairs of strings and meanings. Such a language can 
be specified by a comprehensive list of string-meaning pairs, and the question is whether it can be 
specified in some more efficient way. 

As the theory of automata and formal languages were developed in the 1950s, grammars that generate 
languages by means of production rules correlate with automata that accept languages. Typically, this 
concerned grammar. In the case of semantics, Brighton employs the idea of a special kind of finite-state 
machine, a so-called transducer. Basically, a transducer accepts certain string-meaning pairs and rejects 
others. For each such pair in the language the machine accepts there is a path through states of the 
machine, starting with the initial state and ending in the final, accepting, state. For each new letter of a 
meaningful string, as read from left to right, there is a possible branch along which the machine can move 
into a new state, one branch for every meaning compatible with the initial segment of the string that has 
been considered so far. After the final letter, the machine moves into the accepting state, and if the string 
happens not to have a meaning in the language, the machine just halts in a non-accepting state. 

In the most elementary, non-efficient case, there is a 1−1 correlation between strings of the language and 
paths of the machine. But for some languages it is possible to compress the machine. For instance, if two 
strings start with the same letter and also are associated with the same initial feature-value, the initial 
segments of the two paths can be merged into a single shared segment of both paths. And in general, 
when a letter value part is shared between two string-meaning pairs, there is a corresponding merge to be 
made in the path. The machine gets compressed. The description of the machine becomes shorter. 

In case the semantics of such a language is compositional, each letter of the alphabet corresponds to a 
particular value of some feature. In such a case, compression of the machine can go very far, resulting in a 
minimal transducer with one state for each string position / semantic feature, and between these states one 
branch (edge) for each value of the corresponding feature. Such a machine is minimal. In the opposite 
case, where no compression, or hardly any compression, is possible, the language is called “random” or 
“holistic”; such a language has to be learned piecemeal, one word at a time20. 

20 This is not the customary use of the term ‘holistic’ in the philosophy of language. There, it typically indicates 
interdependence in meanings between different expressions, and therefore in this sense semantic holism is the 
opposite of semantic randomness. Cf Pagin 2006. 
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We can therefore see that there is a certain connection between compositionality and minimal complexity. 
Complexity can be measured with respect to different parameters and in different ways. Brighton appeals 
to Kolmogorov complexity (or minimal description length complexity) (cf. Li and Vitányi 1997): given 
some standard encoding (such as a particular universal Turing machine), complexity is measured in the 
number of bits required to describe certain data or functions. For instance, if, given a way of encoding 
Turing machines by means of some particular universal machine, a smaller Turing machine can be used 
for computing a function f than can be used for computing a function g, function f is deemed to have 
lower Kolmogorov complexity than g.  

Brighton applies to a language learning situation where the learner gets certain linguistic data (a sample of 
string-meaning pairs) and forms a hypothesis about the data (in the form of a transducer). The complexity 
is then measured as a certain sum: the sum of the length of the description of the machine and the length 
of the description of the data by utilizing the machine. If the machine is compact, the complexity is low. 
Therefore, roughly, low complexity corresponds to compositionality. 

This is then implemented in an evolutionary framework, i.e. here in iterated learning framework. The 
learning bottleneck has the effect that in each transition from teacher to learner, only a proper subset of 
the entire language can be actually exhibited, and the learner needs to form a hypothesis about the 
language that fits the data. Brighton studied what happens when it is built in to the evolutionary process 
that learners try to minimize complexity, i.e. try to find the most compact machine compatible with the 
data, and also generate new string-meaning pairs only if they are compatible with the hypothesis they 
have formed. It was shown in computer simulations that a process starting from an arbitrary language, 
after a number of learning generations, eventually leads to a stable state where the language 
approximately compositional. 

This is an interesting result. Still, from the point of view of my own interests, it suffers from two 
interrelated drawbacks. On the one hand, compositionality is built into the evolutionary process in the 
sense that it governs the hypothesis formation of new learners, as well as their creative production of new 
string-meaning pairs (with random creative production, no compression results). That limits the value of 
the explanation. Especially, building in a compositional hypothesis formation function does not offer a 
very distinct alternative to Chomsky’s innateness hypothesis. 

On the other hand, compositionality is contrasted only with randomness (“holism”). No account is taken 
of semantics that can be given a compact description by means of some recursive semantic function that 
is still not compositional. This may be a theoretical oversight, but it is also connected with the simplified 
semantic model in terms of acceptability by transducers. Compression depends on the association of 
letters with values, and if two letters are associated with the same value, they will be interchangeable, in 
the strings of a fully compressed language, without changing the acceptability of the string-meaning pair. 
By contrast, if we were to use a Turing machine for accepting string-meaning pairs, a compact machine 
could accept a language with infinite string-meaning pairs but a non-compositional semantics. Then the 
question arises again: why would compositional semantics be desirable, over and above a computable 
semantics? I shall propose an answer to this question in the next section. 
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The complexity of interpretation 
The function version of compositional semantics is given by recursion over syntax, but that does not 
imply that the meaning operations are defined by recursion over meaning, in which case we have 
recursive semantics. Standard semantic theories are typically both recursive and compositional, but the 
two notions are mutually independent. For a semantic function µ to be given by recursion it must hold 
that: 

Rec(µ) There is a function b and for every α ∈ Σ an operation rα such that for every meaningful 
expression s, 

µ(𝑠𝑠) = �
𝑏𝑏(𝑠𝑠)                                                                𝑖𝑖𝑖𝑖 𝑠𝑠 𝑖𝑖𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎

𝑟𝑟𝑟𝑟(µ(𝑢𝑢1), … , µ(𝑢𝑢𝑢𝑢),𝑢𝑢1, … ,𝑢𝑢𝑢𝑢 )                          𝑖𝑖𝑖𝑖 𝑠𝑠 =  𝑟𝑟(𝑢𝑢1, … ,𝑢𝑢𝑢𝑢 )
    

 

For µ to be recursive, the basic function b and the meaning composition operation rα must themselves be 
recursive, but this is not required in the function version of compositionality. In the other direction, the 
presence of the terms u1,..., un themselves as arguments to rα, has the effect that the compositional 
substitution laws need not hold. Substituting a subterm for another subterm with the same meaning may 
change the meaning of the mother term21. 

By a generalization of Church’s Thesis, a semantics is computable if and only if it is recursive. Therefore, 
if we want semantics to be computable, we want it to be recursive. Again, is there any reason why it 
should be compositional as well?  

One possible reason has to do with the efficiency, and thereby with the complexity, of interpretation. We 
can look at the task of interpretation, i.e. semantic processing, as a problem in the sense of complexity 
theory. Classical computational complexity theory (of which the theory of Kolmogorov complexity is one 
species) is concerned with giving mathematical measures of the difficulty of mathematical problems. The 
problem need not be a problem within any standard branch of mathematics, such as number theory or 
geometry, but must be a problem that can be adequately represented in a formal language, as an input to 
computation. 

For measuring the complexity of a problem one needs a computation method. One then asks how much of 
resources is needed by this method for arriving at a solution to the problem. A standard method that is 
used as a reference device in this sense is that of one-tape Turing machines. One of the standard resources 
is time, in the sense of the number of computation steps needed by the Turing machine for arriving at the 
solution. This is so-called time complexity. 

With a problem type and computation method is associated a time complexity function C. This is a 
function that takes as argument a measure of the size of a problem instance, as a numerical value, and 
gives as value the size of the largest computation that is needed to compute any problem of the same size. 
We can illustrate this with one of the most classical examples, the problem of the Travelling Salesman: a 
salesman is to visit a number k of cities exactly once and then return home, and the problem is to find a 
visiting order that minimizes the total distance travelled. In this case the solution consists in selecting the 
optimal order and verifying that it is optimal. The number of cities k is the size of the problem instance, 
and this is the argument to the complexity function C. Its value C (k) is the number of computation steps 
needed at most for determining the solution for any problem instance of size k. 

21 This can happen e.g. with simple semantics for quotation, as noted e.g. in Werning 2005. Such a semantics is 
given by Christopher Potts (2007), incorrectly claiming that it is compositional. Cf. Pagin and Westerståhl 2010d 
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In complexity theory one is interested not so much in the value of C for a particular argument, but rather 
in how fast the value C (k) grows when the argument increases. If C (k) is bounded by a linear function of 
k, the time complexity is said to be linear; if it is bounded by kn, for some natural number n, the time 
complexity is said to be polynomial, or equivalently that the problem is solvable in polynomial time. 

Problems that are solvable in polynomial time are generally regarded as tractable, or feasible, while if the 
value of the complexity function grows faster, they are said to be intractable (this is known as the 
Cobham-Edmonds thesis). It is not known whether the travelling salesman problem is intractable in this 
sense. The reason is that no method is known for determining the solution (with certainty and for any 
finite k) that is more efficient than calculating the total travelling distance for each visiting order and 
selecting the shortest. Since the number of visiting orders for k cities is k!, the factorial of k, and since k! 
grows faster than kn, for any n, the general problem is intractable if there is no method sufficiently faster 
then checking all possible orders of travelling22. 

How does this apply to semantic interpretation? We need a method of computing meanings from 
disambiguated expressions as inputs. If we then think of semantics in functional terms, we want to 
compute a semantic function µ that takes as arguments disambiguated expressions — grammatical terms 
— and gives as values meanings m of some sort in this format: 

µ(t) = m. 

Since meanings are non-syntactic abstract entities, they must be syntactically represented, i.e. by means of 
a sufficiently formal meta-language ML. That means that in an equation instance of this format, ‘t ’ is 
replaced by an expression denoting a grammatical term, and ‘m’ by an expression of ML.  

Then we need an algorithmic method of some kind for computing meanings. A type of method that is 
particularly well suited is that of term rewriting systems. In general, a term rewriting system (a TRS) R is 
a pair (F, R) of a signature F and a set R of rewrite rules over that signature. The signature consists of a 
set of basic terms, and a set of operators. To this is added a set of rewrite variables which are used in 
stating the rules. A rewrite rule has the form 

𝐹𝐹(𝑥𝑥�⃗ )  →  𝐺𝐺(�⃗�𝑦) 

(where the arrows over the variables indicate that it is a sequence of variables)23. An example would be 

h(x1)bx2 → g(x1, c)bd 

where ‘b’, ‘c’ and ‘d’ are constants. Every rule application is a substitution operation, where an instance 
of the left-hand-side (lhs) of the rule is replaced by the corresponding instance of the right-hand-side (rhs) 
of the same rule. The substitution may be per' formed on a subterm of a larger term. An instance of a term 
s is any term s resulting from s by uniform substitution by terms for rewrite variables. Thus, ‘h(s7)bf (s9)’ 
is an instance of the lhs above. 

A derivation is a sequence of rule applications, where every step except the initial one is an application to 
a term that results from a previous step. In case a term is reached such that no rule of the TRS applies to it 
(and hence not to any of its subterms either), the derivation has terminated, and the term is said to be in 
normal form. The original term is then reduced to normal form. A rewrite system R terminates iff every 
derivation eventually leads to a term in normal form. R is said to be confluent iff it holds for any distinct 
terms s1, s2, s3 such that s2 and s3 both can be derived from s1, that there is a term s4 such that s4 can be 
derived from both s2 and s3. R is convergent iff R both terminates and is confluent. 

22 For interesting partial results concerning this problem, cf. the Wikipedia article http://en. 
wikipedia.org/wiki/Travelling_salesman_problem. The problem is known to be NP hard, which entails that if NP =P, 
as is generally believed, it is intractable. 
23 For an excellent introduction to term rewriting, see Baader and Nipkow 1998. 
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Rewriting systems are general computation devices, in the sense that the reduction of a rewrite term to 
normal form is a computation. It is a standard result that any Turing machine can be simulated by a term 
rewrite system (cf. Baader and Nipkow 1998, , 9497). We also get a very natural measure of time 
complexity by just counting the number of rule applications, i.e. reduction steps, until normal form is 
reached. One reason why term rewriting is a natural choice for semantic interpretation is that the clauses 
by means of which a semantic system is defined correspond closely to rewrite rules, and can be 
transformed into rules by a minimal change. 

To illustrate, consider Davidson’s Annette example (Davidson 1967, 17-18) of a compositional semantics: 

(6)  i) Ref(‘Annette’) = Annette 

ii) Ref(‘the father of’ ͡   t) = the father of Ref(t) 

This simple definition has the form of a system of equations, and provides a method for deriving the 
interpretation of ‘the father of the father of the father of Annette’ in four steps of substitution. Let ‘F’ be 
the object language father operator and ‘F’ its analogue in the meta-language, and let ‘a’ be the object 
language name of Annette. 

Then we have in four steps with the semantic function µa: 

(7) µa (F (F (F (a)))) = F(µa (F (F (a)))) = F(F(µa (F (a)))) 

 = F(F(F(µa (a)))) 

 = F(F(F(Annette))) 

where (what corresponds to) the second clause of (6) is applied three times and the first clause once. 

Each derivation step in (7) is a substitution step. Each substitution is performed in accordance with (what 
corresponds to) equations in (6). These equations are applied only for substitution from left to right: an 
instance of the left-hand side is replaced by the corresponding instance of the right-hand side. We have 
then in fact used the system as a rewrite system. To make that explicit, replace the identity signs with left-
right arrows: 

(8) i) µa (a) → Annette 

ii) µa (F (x)) → F(µa (x)) 

In rewrite system (8), any term of the system is reduced to normal form in a number of steps that is 
identical to number of symbol occurrences (i.e. occurrences of ‘F’ and ‘a’) of the term. If we take the size 
of the problem to be the size of the input term then the associated time complexity function C(8) is the 
identity function. That is, C(8)(k) = k. 

We c an easily speed up the system by adding a third rule:  

(9) i) µa (a) → Annette 

ii) µa (F (x)) → F(µa(x)) 

iii) µa (F (F (x))) → F(F(µa (x))) 

Because of the third rule, two occurrences of ‘F’ can be processed in one step. So with this addition we 
get another complexity function: C(9)(k) = k/2+1 for odd k (i.e. even number of F ’s), and k + 1/2 for even 
k. Clearly, by applying this method, for each system we can find another that is more efficient with 
respect to time. Still there is an upper bound the speed-up. Since for any system there is finite number n 
such that no rule application processes more than n symbol occurrences, for that system each full 
reduction to normal form will take at least k/n steps. Hence, no system has reductions faster than linear 
time. 

60 



Compositionality, Complexity, and Evolution 

The speed-up between systems (8) and (9) is acquired at the cost of enlarging the rule system, adding a 
redundant rule. Hence, we can see that there is a trade-off between the size of the system, with respect to 
the number of rules, and the speed of the system. It is natural to ask for the speed of a system that has a 
minimal number of rules, i.e. a system R such that for any equivalent system R ', one that reduces the same 
input terms to the same normal form terms, R' has at least the same size as R. It is natural to set identity as 
the maximum of efficiency for such a system. That is, if for a minimal rule system R the corresponding 
time complexity function CR is such that CR (k) ≤ k, then we say that R has maximal efficiency. C(8) is 
maximally efficient in this sense. 

For languages without variable binding, as is shown in Pagin 2012a, a semantics with minimal 
complexity is compositional. The conversation does not hold: just as compositional semantics can fail to 
be computable at all, it can be computable but not efficient. But the requirement of maximal efficiency 
induces compositionality. Moreover, if we add first-order quantifiers, complexity will still be very low, 
although not minimal in the sense defined (cf. Pagin 2012b). Even more significantly, if do allow 
recursive semantics, then the time complexity function will be exponential, and hence the semantics will 
be intractable (cf. Pagin 2011). And if, by contrast, we disallow recursion over meanings, the resulting 
semantics is compositional. Hence, the requirement even of tractable complexity forces compositionality. 

What is the bearing of these results on language acquisition and evolution? The simple immediate ideas 
are these: if a language is easier to interpret, then it is also easier to learn, and language evolution would 
tend to favour a semantics that makes interpretation easy. But it is possible to say something more 
interesting. 

If complexity grows rapidly, then sentences of moderate syntactic complexity can be quite hard to 
process. A sentence like 

(10) Whenever you go into a cave, bring a torch! 

is of moderate syntactic complexity, and could obviously convey useful information. With a recursive 
semantics, the interpretation would require very many steps, rendering the sentence unusable in practice, 
even though interpretable in principle. Hence, we can see why there would be a selection pressure for low 
interpretation complexity. Compositional semantics allows greater expressive power, simply because a 
systematic but non-compositional semantics of a language with the same expressive power would be 
intractable. 
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